aca-tasks/task1/include/mergesort_mt.h

117 lines
4.0 KiB
C++

#include <vector>
#include <span>
#include <thread>
#include <mutex>
#include <functional>
// General purpose mergesorter with multi threading support by Robin Dietzel <robin.dietzel@iem.thm.de>
template<typename T>
class MergeSorterMT {
public:
template<typename C>
MergeSorterMT(C cmp, int max_depth) : cmp(cmp), max_depth(max_depth) {
// Assert that cmp is a function that returns bool and takes two arguments of type T
static_assert(std::is_same<std::invoke_result_t<C, T, T>, bool>(), "C must be a function that returns a bool");
}
// Start sorting process
auto sort(std::vector<T> &data) -> void {
// Create span: like a 'view' on the vector -> no unnecessary copies are made when subdividing sorting problem
std::span<T> sortable(data);
split(sortable, 0, max_depth);
}
private:
// Merge function that merges left & right span into the output span
// No exclusive access on output is necessary (e.g. via mutex) because all parallel threads work on different parts of output
auto merge(std::span<T> &output, std::span<T> left, std::span<T> right) -> void {
// Create buffer, here we need a temporary container where we copy values to, because left and right are a view on parts
// of output
std::vector<T> buf;
buf.reserve(left.size() + right.size());
auto l = left.begin();
auto r = right.begin();
auto o = buf.begin();
// Insert from pre sorted half's
while (l < left.end() && r < right.end()) {
if (cmp(*l, *r)) {
buf.insert(o, *l);
l++;
} else {
buf.insert(o, *r);
r++;
}
o++;
}
// Fill up with rest of left values
while (l < left.end()) {
buf.insert(o, *l);
o++;
l++;
}
// Fill up with rest of right values
while (r < right.end()) {
buf.insert(o, *r);
o++;
r++;
}
// Completely move buffer to output
// IMPORTANT: left and right are still a view on the splitted output, that is now sorted
std::move(buf.begin(), buf.end(), output.begin());
}
// Splitup function
auto split(std::span<T> &data, int depth, const int &mdepth) -> void {
if (std::distance(data.begin(), data.end()) <= 1) {
// Quit if only one element 'insortable'
return;
} else if (std::distance(data.begin(), data.end()) == 2) {
// Swap two values dependant on size for small speedup (no call to further split must be made)
if(cmp(data[1], data[0])) {
std::swap(data[0], data[1]);
return;
}
}
// Determine mid of data
auto mid = data.begin();
std::advance(mid, std::distance(data.begin(), data.end()) / 2);
// Generate left and right view on data (no copies are made here)
std::span<T> left(data.begin(), mid);
std::span<T> right(mid, data.end());
if (depth < mdepth) {
// Create recursive split functions if maximum depth not reached
std::thread left_thread([&]() { split(left, depth + 1, mdepth); });
std::thread right_thread([&]() { split(right, depth + 1, mdepth); });
// Both threads must join before we could further work on the data viewed
// by left and right (recursively sorted by the both calls)
left_thread.join();
right_thread.join();
} else {
// Do normal recursion in a single thread if maximum depth is reached
split(left, depth + 1, mdepth);
split(right, depth + 1, mdepth);
}
// Merge left and right together before returning
merge(data, left, right);
return;
}
private:
// Templated comparator function
std::function<bool(T, T)> cmp;
// Maximum depth
const int max_depth;
};