669 lines
22 KiB
C++
669 lines
22 KiB
C++
#include "main.h"
|
|
#include "usb_device.h"
|
|
#include "usbd_cdc_if.h"
|
|
|
|
#include "LCD_I2C_Driver.h"
|
|
#include "InitSequence.h"
|
|
#include "button_input.h"
|
|
#include "Config_Store.h"
|
|
#include "Menu_Controller.h"
|
|
#include "PressureChannel.h"
|
|
#include "RelayChannel.h"
|
|
#include "GPIChannel.h"
|
|
#include "Menu.h"
|
|
|
|
#define SLAVE_ADDRESS_LCD 0x4e
|
|
|
|
ADC_HandleTypeDef hadc1;
|
|
I2C_HandleTypeDef hi2c1;
|
|
RTC_HandleTypeDef hrtc;
|
|
TIM_HandleTypeDef htim2;
|
|
UART_HandleTypeDef huart1;
|
|
|
|
|
|
void SystemClock_Config(void);
|
|
|
|
static void MX_GPIO_Init(void);
|
|
|
|
static void MX_RTC_Init(void);
|
|
|
|
static void MX_ADC1_Init(void);
|
|
|
|
static void MX_I2C1_Init(void);
|
|
|
|
static void MX_TIM2_Init(void);
|
|
|
|
static void MX_USART1_UART_Init(void);
|
|
|
|
extern int16_t rot_counter;
|
|
extern bool rot_button;
|
|
|
|
using namespace floatpump;
|
|
|
|
bool S_backlight = false;
|
|
|
|
bool S_tankempty = true;
|
|
bool S_refilling = false;
|
|
bool S_refillempty = true;
|
|
uint32_t S_refillcooldown = 0;
|
|
|
|
void CheckTankConditions(Config_Store &cfg, io::PressureChannel &tankLevel, io::RelayChannel &tankPump) {
|
|
//Check if config says relay works inverted
|
|
tankPump.setInverted(cfg.TankPumpInvert.getValue());
|
|
|
|
//First check if Tank has enough water and disable pump if necessary
|
|
if (tankLevel.getPercent() < cfg.TankMinLevel.getValue()) {
|
|
tankPump.switchRelay(io::RelayChannel::state::OFF);
|
|
S_tankempty = true;
|
|
} else if (tankLevel.getPercent() > cfg.TankMinLevel.getValue() + cfg.TankHysteresis.getValue()) {
|
|
tankPump.switchRelay(io::RelayChannel::state::ON);
|
|
S_tankempty = false;
|
|
}
|
|
}
|
|
|
|
void CheckRefillConditions(Config_Store &cfg, io::PressureChannel &tankLevel, io::GPIChannel &refillBlock,
|
|
io::RelayChannel &refillPump) {
|
|
static uint32_t c_RefillCooldown = 0;
|
|
static bool c_LastState = false;
|
|
|
|
bool rblock = (cfg.RefillBlockInvert.getValue()) ? !refillBlock.getStateBool() : refillBlock.getStateBool();
|
|
|
|
if (cfg.RefillEnable.getValue()) {
|
|
//Check whether refilling is necessary
|
|
|
|
if (HAL_GetTick() > (c_RefillCooldown + (cfg.RefillCooldown.getValue() * 60 * 1000))) {
|
|
S_refillcooldown = 0;
|
|
if (tankLevel.getPercent() < cfg.RefillBelow.getValue()) {
|
|
if (cfg.RefillBlockEnable.getValue() && !rblock) {
|
|
refillPump.switchRelay(io::RelayChannel::state::ON);
|
|
c_LastState = true;
|
|
S_refilling = true;
|
|
S_refillempty = false;
|
|
} else if (rblock) {
|
|
refillPump.switchRelay(io::RelayChannel::state::OFF);
|
|
S_refilling = false;
|
|
S_refillempty = true;
|
|
//Reset cooldown only if it was previously on
|
|
if (c_LastState)
|
|
c_RefillCooldown = HAL_GetTick();
|
|
c_LastState = false;
|
|
} else {
|
|
refillPump.switchRelay(io::RelayChannel::state::ON);
|
|
c_LastState = true;
|
|
S_refilling = true;
|
|
S_refillempty = false;
|
|
}
|
|
} else if (tankLevel.getPercent() > cfg.RefillBelow.getValue() + cfg.RefillHysteresis.getValue()) {
|
|
refillPump.switchRelay(io::RelayChannel::state::OFF);
|
|
S_refilling = false;
|
|
S_refillempty = false;
|
|
if (c_LastState)
|
|
c_RefillCooldown = HAL_GetTick();
|
|
c_LastState = false;
|
|
}
|
|
} else {
|
|
HAL_GPIO_TogglePin(LED3_GPIO_Port, LED3_Pin);
|
|
refillPump.switchRelay(io::RelayChannel::state::OFF);
|
|
S_refillcooldown = (((c_RefillCooldown + (cfg.RefillCooldown.getValue() * 60 * 1000)) - HAL_GetTick()) /
|
|
1000);
|
|
}
|
|
} else {
|
|
refillPump.switchRelay(io::RelayChannel::state::OFF);
|
|
}
|
|
}
|
|
|
|
|
|
int main(void) {
|
|
// Step 1: Initialize HAL
|
|
HAL_Init();
|
|
|
|
//Step 2: Configure Clock and RCC
|
|
SystemClock_Config();
|
|
|
|
//Step 3: Configure Peripherals
|
|
MX_GPIO_Init();
|
|
//MX_RTC_Init();
|
|
MX_TIM2_Init();
|
|
MX_USB_DEVICE_Init();
|
|
MX_ADC1_Init();
|
|
MX_I2C1_Init();
|
|
MX_USART1_UART_Init();
|
|
|
|
|
|
//Disable Interrupt for Debouncing timer during display initialisation (exact timings are necessary)
|
|
HAL_NVIC_DisableIRQ(TIM2_IRQn);
|
|
LCD_I2C_Driver &display = floatpump::LCD_I2C_Driver::getInstance(hi2c1, SLAVE_ADDRESS_LCD);
|
|
HAL_NVIC_EnableIRQ(TIM2_IRQn);
|
|
|
|
//Restore configuration
|
|
Config_Store globalConfig;
|
|
globalConfig.loadFromFlash();
|
|
|
|
//Run init Sequence
|
|
InitSequence initializer(display);
|
|
initializer.runInitSequence();
|
|
|
|
using namespace floatpump::menu;
|
|
|
|
Menu tankmenu("Tank");
|
|
|
|
bool a_caliblow, a_calibhigh = false;
|
|
tankmenu.addEntry<MenuEntryExecute>(&a_caliblow, "Kal. Unt. Punkt");
|
|
tankmenu.addEntry<MenuEntryExecute>(&a_calibhigh, "Kal. Ob. Punkt");
|
|
|
|
tankmenu.addEntry<MenuEntryNumeric>(globalConfig.TankCalibLow.getLink(), "K Unten");
|
|
tankmenu.addEntry<MenuEntryNumeric>(globalConfig.TankCalibHigh.getLink(), "K Oben");
|
|
|
|
tankmenu.addEntry<MenuEntryPercent>(globalConfig.TankMinLevel.getLink(), "Min. Fuellst.");
|
|
tankmenu.addEntry<MenuEntryPercent>(globalConfig.TankHysteresis.getLink(), "Hysterese");
|
|
|
|
tankmenu.addEntry<MenuEntryCheckable>(globalConfig.TankPumpInvert.getLink(), "Inv Relais");
|
|
|
|
|
|
Menu refillmenu("Nachspeisung");
|
|
|
|
refillmenu.addEntry<MenuEntryCheckable>(globalConfig.RefillEnable.getLink(), "Nachsp. akt.");
|
|
refillmenu.addEntry<MenuEntryCheckable>(globalConfig.RefillBlockEnable.getLink(), "Notabschalt.");
|
|
refillmenu.addEntry<MenuEntryCheckable>(globalConfig.RefillBlockInvert.getLink(), "NotAbs. Inv.");
|
|
|
|
refillmenu.addEntry<MenuEntryPercent>(globalConfig.RefillBelow.getLink(), "Auff. bis");
|
|
refillmenu.addEntry<MenuEntryPercent>(globalConfig.RefillHysteresis.getLink(), "Hysterese");
|
|
|
|
refillmenu.addEntry<MenuEntryNumeric>(globalConfig.RefillCooldown.getLink(), "Wartezeit");
|
|
|
|
|
|
Menu mainmenu("Hauptmenu");
|
|
mainmenu.addSubmenu(&tankmenu);
|
|
mainmenu.addSubmenu(&refillmenu);
|
|
|
|
|
|
|
|
//Instantiate Input and Output modules
|
|
io::PressureChannel tankLevel0(&hadc1, MPWR0_GPIO_Port, MPWR0_Pin, 50);
|
|
tankLevel0.LinkCalibConfig(globalConfig.TankCalibLow.getLink(), globalConfig.TankCalibHigh.getLink());
|
|
|
|
io::GPIChannel refillBlocker0(GPI0_GPIO_Port, GPI0_Pin);
|
|
io::RelayChannel tankPump(OCHAN0_GPIO_Port, OCHAN0_Pin, true, io::RelayChannel::state::OFF);
|
|
io::RelayChannel refillPump(OCHAN1_GPIO_Port, OCHAN1_Pin, false, io::RelayChannel::state::OFF);
|
|
|
|
uint32_t last_menu_retrigger = 0;
|
|
uint32_t last_backlight_retrigger = 0;
|
|
|
|
bool f_store = false, f_restore = false;
|
|
mainmenu.addEntry<MenuEntryExecute>(&f_store, "Speichern");
|
|
mainmenu.addEntry<MenuEntryExecute>(&f_restore, "Laden");
|
|
|
|
Menu_Controller controller(&mainmenu, display);
|
|
static int old_pos = 0;
|
|
|
|
while (1) {
|
|
|
|
display.LCDSetBacklight(S_backlight);
|
|
|
|
|
|
display.LCDSetCursor(0, 0);
|
|
display.LCDSendCString(
|
|
const_cast<char *>(std::string(
|
|
"Fuellstand " + std::to_string(tankLevel0.getPercent()) + " %").c_str()));
|
|
display.LCDSetCursor(0, 1);
|
|
if (S_tankempty) {
|
|
display.LCDSendCString(const_cast<char *>(std::string("Tank Wassermangel ").c_str()));
|
|
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_SET);
|
|
|
|
} else {
|
|
display.LCDSendCString(const_cast<char *>(std::string("Tank Normal ").c_str()));
|
|
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_RESET);
|
|
}
|
|
|
|
display.LCDSetCursor(0, 2);
|
|
if (S_refilling) {
|
|
display.LCDSendCString(const_cast<char *>(std::string("Nachspeisung laeuft ").c_str()));
|
|
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_RESET);
|
|
} else {
|
|
display.LCDSendCString(const_cast<char *>(std::string("Nachspeisung inaktiv").c_str()));
|
|
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_SET);
|
|
|
|
}
|
|
|
|
display.LCDSetCursor(0, 3);
|
|
if (S_refillcooldown > 0) {
|
|
int remaining_mins = S_refillcooldown / 60;
|
|
if (remaining_mins > 0)
|
|
display.LCDSendCString(const_cast<char *>(std::string(
|
|
"Nsp. wartet: min " + std::to_string(S_refillcooldown / 60)).c_str()));
|
|
else
|
|
display.LCDSendCString(
|
|
const_cast<char *>(std::string("Nsp. wartet: s " + std::to_string(S_refillcooldown)).c_str()));
|
|
} else if (S_refillempty) {
|
|
display.LCDSendCString(const_cast<char *>(std::string("Nachspeisung mangel ").c_str()));
|
|
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
|
|
} else {
|
|
display.LCDSendCString(const_cast<char *>(std::string("Nachspeisung ok ").c_str()));
|
|
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_SET);
|
|
}
|
|
|
|
|
|
//Check for rotation to enable display backlight
|
|
if (old_pos < rot_counter) {
|
|
controller.pushEvent(menu::Menu_Controller::Event::Increase);
|
|
old_pos = rot_counter;
|
|
last_backlight_retrigger = HAL_GetTick();
|
|
} else if (old_pos > rot_counter) {
|
|
controller.pushEvent(menu::Menu_Controller::Event::Decrease);
|
|
old_pos = rot_counter;
|
|
last_backlight_retrigger = HAL_GetTick();
|
|
}
|
|
|
|
//Check and toggle backlight state
|
|
if (HAL_GetTick() > last_backlight_retrigger + 60000) {
|
|
S_backlight = false;
|
|
} else {
|
|
S_backlight = true;
|
|
}
|
|
|
|
if (rot_button) {
|
|
display.LCDSetBacklight(true);
|
|
rot_button = false;
|
|
last_menu_retrigger = HAL_GetTick();
|
|
while (true) {
|
|
//Display menu until timeout
|
|
controller.execute();
|
|
if (rot_button) {
|
|
rot_button = false;
|
|
controller.pushEvent(menu::Menu_Controller::Event::Push);
|
|
last_menu_retrigger = HAL_GetTick();
|
|
}
|
|
|
|
if (old_pos < rot_counter) {
|
|
controller.pushEvent(menu::Menu_Controller::Event::Increase);
|
|
old_pos = rot_counter;
|
|
last_menu_retrigger = HAL_GetTick();
|
|
} else if (old_pos > rot_counter) {
|
|
controller.pushEvent(menu::Menu_Controller::Event::Decrease);
|
|
old_pos = rot_counter;
|
|
last_menu_retrigger = HAL_GetTick();
|
|
}
|
|
HAL_Delay(100);
|
|
|
|
//Execute Calibrations if necessary
|
|
if (a_caliblow) {
|
|
tankLevel0.calibrateLow();
|
|
controller.execute();
|
|
HAL_Delay(2000);
|
|
a_caliblow = false;
|
|
} else if (a_calibhigh) {
|
|
tankLevel0.calibrateHigh();
|
|
controller.execute();
|
|
HAL_Delay(2000);
|
|
a_calibhigh = false;
|
|
}
|
|
|
|
//Store or restore if necessary
|
|
if (f_store) {
|
|
globalConfig.saveToFlash();
|
|
f_store = false;
|
|
} else if (f_restore) {
|
|
globalConfig.loadFromFlash();
|
|
f_restore = false;
|
|
}
|
|
|
|
if (HAL_GetTick() > last_menu_retrigger + 10000) {
|
|
display.LCDClearDisplay();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);
|
|
|
|
//Poll Sensors
|
|
tankLevel0.poll();
|
|
refillBlocker0.poll();
|
|
|
|
//Check conditions
|
|
CheckTankConditions(globalConfig, tankLevel0, tankPump);
|
|
CheckRefillConditions(globalConfig, tankLevel0, refillBlocker0, refillPump);
|
|
|
|
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET);
|
|
HAL_Delay(1000);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
void SystemClock_Config(void) {
|
|
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
|
|
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
|
|
|
|
/** Configure the main internal regulator output voltage
|
|
*/
|
|
__HAL_RCC_PWR_CLK_ENABLE();
|
|
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
|
|
|
|
/** Initializes the RCC Oscillators according to the specified parameters
|
|
* in the RCC_OscInitTypeDef structure.
|
|
*/
|
|
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_LSI;
|
|
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
|
|
RCC_OscInitStruct.LSEState = RCC_LSI_ON;
|
|
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
|
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
|
|
RCC_OscInitStruct.PLL.PLLM = 12;
|
|
RCC_OscInitStruct.PLL.PLLN = 144;
|
|
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV6;
|
|
RCC_OscInitStruct.PLL.PLLQ = 3;
|
|
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
|
|
Error_Handler();
|
|
}
|
|
|
|
/** Initializes the CPU, AHB and APB buses clocks
|
|
*/
|
|
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
|
|
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
|
|
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
|
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
|
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
|
|
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
|
|
|
|
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) {
|
|
Error_Handler();
|
|
}
|
|
}
|
|
|
|
static void MX_ADC1_Init(void) {
|
|
|
|
/* USER CODE BEGIN ADC1_Init 0 */
|
|
|
|
/* USER CODE END ADC1_Init 0 */
|
|
|
|
ADC_ChannelConfTypeDef sConfig = {0};
|
|
|
|
/* USER CODE BEGIN ADC1_Init 1 */
|
|
|
|
/* USER CODE END ADC1_Init 1 */
|
|
|
|
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
|
|
*/
|
|
hadc1.Instance = ADC1;
|
|
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
|
|
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
|
|
hadc1.Init.ScanConvMode = DISABLE;
|
|
hadc1.Init.ContinuousConvMode = DISABLE;
|
|
hadc1.Init.DiscontinuousConvMode = DISABLE;
|
|
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
|
|
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
|
|
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
|
|
hadc1.Init.NbrOfConversion = 1;
|
|
hadc1.Init.DMAContinuousRequests = DISABLE;
|
|
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
|
|
if (HAL_ADC_Init(&hadc1) != HAL_OK) {
|
|
Error_Handler();
|
|
}
|
|
|
|
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
|
|
*/
|
|
sConfig.Channel = ADC_CHANNEL_8;
|
|
sConfig.Rank = 1;
|
|
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
|
|
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
|
|
Error_Handler();
|
|
}
|
|
/* USER CODE BEGIN ADC1_Init 2 */
|
|
|
|
/* USER CODE END ADC1_Init 2 */
|
|
|
|
}
|
|
|
|
static void MX_I2C1_Init(void) {
|
|
|
|
/* USER CODE BEGIN I2C1_Init 0 */
|
|
|
|
/* USER CODE END I2C1_Init 0 */
|
|
|
|
/* USER CODE BEGIN I2C1_Init 1 */
|
|
|
|
/* USER CODE END I2C1_Init 1 */
|
|
hi2c1.Instance = I2C1;
|
|
hi2c1.Init.ClockSpeed = 100000;
|
|
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
|
|
hi2c1.Init.OwnAddress1 = 0;
|
|
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
|
|
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
|
|
hi2c1.Init.OwnAddress2 = 0;
|
|
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
|
|
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
|
|
if (HAL_I2C_Init(&hi2c1) != HAL_OK) {
|
|
Error_Handler();
|
|
}
|
|
/* USER CODE BEGIN I2C1_Init 2 */
|
|
|
|
/* USER CODE END I2C1_Init 2 */
|
|
|
|
}
|
|
|
|
static void MX_RTC_Init(void) {
|
|
|
|
/* USER CODE BEGIN RTC_Init 0 */
|
|
|
|
/* USER CODE END RTC_Init 0 */
|
|
|
|
RTC_TimeTypeDef sTime = {0};
|
|
RTC_DateTypeDef sDate = {0};
|
|
|
|
/* USER CODE BEGIN RTC_Init 1 */
|
|
|
|
/* USER CODE END RTC_Init 1 */
|
|
|
|
/** Initialize RTC Only
|
|
*/
|
|
hrtc.Instance = RTC;
|
|
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
|
|
hrtc.Init.AsynchPrediv = 127;
|
|
hrtc.Init.SynchPrediv = 255;
|
|
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
|
|
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
|
|
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
|
|
if (HAL_RTC_Init(&hrtc) != HAL_OK) {
|
|
Error_Handler();
|
|
}
|
|
|
|
/** Initialize RTC and set the Time and Date
|
|
*/
|
|
sTime.Hours = 0;
|
|
sTime.Minutes = 0;
|
|
sTime.Seconds = 0;
|
|
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
|
|
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
|
|
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN) != HAL_OK) {
|
|
Error_Handler();
|
|
}
|
|
sDate.WeekDay = RTC_WEEKDAY_MONDAY;
|
|
sDate.Month = RTC_MONTH_JANUARY;
|
|
sDate.Date = 1;
|
|
sDate.Year = 0;
|
|
|
|
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BIN) != HAL_OK) {
|
|
Error_Handler();
|
|
}
|
|
/* USER CODE BEGIN RTC_Init 2 */
|
|
|
|
/* USER CODE END RTC_Init 2 */
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief TIM2 Initialization Function
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void MX_TIM2_Init(void) {
|
|
//Timer has input of 24MHZ
|
|
//Scale down with prescaler to 10kHz
|
|
//Auto reload each ms
|
|
|
|
/* USER CODE BEGIN TIM2_Init 0 */
|
|
|
|
/* USER CODE END TIM2_Init 0 */
|
|
|
|
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
|
|
|
|
/* USER CODE BEGIN TIM2_Init 1 */
|
|
|
|
/* USER CODE END TIM2_Init 1 */
|
|
htim2.Instance = TIM2;
|
|
htim2.Init.Prescaler = 23;
|
|
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
|
|
htim2.Init.Period = 99;
|
|
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
|
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
|
|
if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
|
|
Error_Handler();
|
|
|
|
}
|
|
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
|
|
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
|
|
Error_Handler();
|
|
}
|
|
|
|
//HAL_TIM_Base_Start(&htim2);
|
|
//Directly start timer base generation in interrupt mode
|
|
HAL_TIM_Base_Start_IT(&htim2);
|
|
/* USER CODE BEGIN TIM2_Init 2 */
|
|
|
|
/* USER CODE END TIM2_Init 2 */
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief USART1 Initialization Function
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void MX_USART1_UART_Init(void) {
|
|
|
|
/* USER CODE BEGIN USART1_Init 0 */
|
|
|
|
/* USER CODE END USART1_Init 0 */
|
|
|
|
/* USER CODE BEGIN USART1_Init 1 */
|
|
|
|
/* USER CODE END USART1_Init 1 */
|
|
huart1.Instance = USART1;
|
|
huart1.Init.BaudRate = 115200;
|
|
huart1.Init.WordLength = UART_WORDLENGTH_8B;
|
|
huart1.Init.StopBits = UART_STOPBITS_1;
|
|
huart1.Init.Parity = UART_PARITY_NONE;
|
|
huart1.Init.Mode = UART_MODE_TX_RX;
|
|
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
|
|
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
|
|
if (HAL_UART_Init(&huart1) != HAL_OK) {
|
|
Error_Handler();
|
|
}
|
|
/* USER CODE BEGIN USART1_Init 2 */
|
|
|
|
/* USER CODE END USART1_Init 2 */
|
|
|
|
}
|
|
|
|
static void MX_GPIO_Init(void) {
|
|
GPIO_InitTypeDef GPIO_InitStruct = {0};
|
|
|
|
/* GPIO Ports Clock Enable */
|
|
__HAL_RCC_GPIOC_CLK_ENABLE();
|
|
__HAL_RCC_GPIOH_CLK_ENABLE();
|
|
__HAL_RCC_GPIOA_CLK_ENABLE();
|
|
__HAL_RCC_GPIOB_CLK_ENABLE();
|
|
|
|
/*Configure GPIO pin Output Level */
|
|
HAL_GPIO_WritePin(XXUNUSED_GPIO_Port, XXUNUSED_Pin, GPIO_PIN_RESET);
|
|
|
|
/*Configure GPIO pin Output Level */
|
|
HAL_GPIO_WritePin(GPIOA, OCHAN0_Pin | OCHAN1_Pin | OCHAN2_Pin | BEEP_Pin, GPIO_PIN_RESET);
|
|
|
|
/*Configure GPIO pin Output Level */
|
|
HAL_GPIO_WritePin(GPIOA, LED2_Pin | LED3_Pin | LED4_Pin | LED5_Pin, GPIO_PIN_SET);
|
|
|
|
/*Configure GPIO pin Output Level */
|
|
HAL_GPIO_WritePin(GPIOB, LED0_Pin
|
|
| LED1_Pin, GPIO_PIN_SET);
|
|
|
|
HAL_GPIO_WritePin(GPIOB,
|
|
MPWR0_Pin | MPWR1_Pin | MPWR2_Pin, GPIO_PIN_RESET);
|
|
|
|
/*Configure GPIO pin : XXUNUSED_Pin */
|
|
GPIO_InitStruct.Pin = XXUNUSED_Pin;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
HAL_GPIO_Init(XXUNUSED_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
/*Configure GPIO pins : OCHAN0_Pin OCHAN1_Pin OCHAN2_Pin LED2_Pin
|
|
LED3_Pin LED4_Pin LED5_Pin BEEP_Pin */
|
|
GPIO_InitStruct.Pin = OCHAN0_Pin | OCHAN1_Pin | OCHAN2_Pin | LED2_Pin
|
|
| LED3_Pin | LED4_Pin | LED5_Pin | BEEP_Pin;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
|
|
|
/*Configure GPIO pins : RRDT_Pin RRSW_pin RRCLK_Pin */
|
|
GPIO_InitStruct.Pin = RRDT_Pin | RRSW_Pin | RRCLK_Pin;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
|
|
|
|
/*Configure GPIO pin : ADC1_2_Pin */
|
|
GPIO_InitStruct.Pin = ADC1_2_Pin;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
HAL_GPIO_Init(ADC1_2_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
/*Configure GPIO pins : MPWR0_Pin MPWR1_Pin MPWR2_Pin LED0_Pin
|
|
LED1_Pin */
|
|
GPIO_InitStruct.Pin = MPWR0_Pin | MPWR1_Pin | MPWR2_Pin | LED0_Pin
|
|
| LED1_Pin;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
|
|
|
/*Configure GPIO pins : GPI1_Pin GPI2_Pin GPI0_Pin */
|
|
GPIO_InitStruct.Pin = GPI1_Pin | GPI2_Pin | GPI0_Pin;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
|
|
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
|
|
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
|
}
|
|
|
|
/**
|
|
* @brief This function is executed in case of error occurrence.
|
|
* @retval None
|
|
*/
|
|
void Error_Handler(void) {
|
|
/* USER CODE BEGIN Error_Handler_Debug */
|
|
/* User can add his own implementation to report the HAL error return state */
|
|
__disable_irq();
|
|
MX_GPIO_Init();
|
|
HAL_GPIO_WritePin(LED0_GPIO_Port, LED0_Pin, GPIO_PIN_RESET);
|
|
while (1) {
|
|
}
|
|
/* USER CODE END Error_Handler_Debug */
|
|
}
|
|
|
|
#ifdef USE_FULL_ASSERT
|
|
/**
|
|
* @brief Reports the name of the source file and the source line number
|
|
* where the assert_param error has occurred.
|
|
* @param file: pointer to the source file name
|
|
* @param line: assert_param error line source number
|
|
* @retval None
|
|
*/
|
|
void assert_failed(uint8_t *file, uint32_t line)
|
|
{
|
|
/* USER CODE BEGIN 6 */
|
|
/* User can add his own implementation to report the file name and line number,
|
|
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
|
|
/* USER CODE END 6 */
|
|
}
|
|
#endif /* USE_FULL_ASSERT */
|