floatpump-firmware/floatpump/Core/Src/main.cpp

834 lines
28 KiB
C++

#include "main.h"
#include "usb_device.h"
#include "usbd_cdc_if.h"
#include "LCD_I2C_Driver.h"
#include "InitSequence.h"
#include "Config_Store.h"
#include "Menu_Controller.h"
#include "PressureChannel.h"
#include "RelayChannel.h"
#include "GPIChannel.h"
#include "Menu.h"
#define SLAVE_ADDRESS_LCD 0x4e
ADC_HandleTypeDef hadc1;
I2C_HandleTypeDef hi2c1;
RTC_HandleTypeDef hrtc;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
UART_HandleTypeDef huart1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_RTC_Init(void);
static void MX_ADC1_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
static void MX_USART1_UART_Init(void);
extern uint16_t rot_counter;
extern bool rot_button;
extern uint16_t minute_counter;
using namespace floatpump;
bool S_backlight = false;
bool S_tankempty = true;
bool S_refilling = false;
bool S_refillempty = true;
uint32_t S_refillcooldown = 0;
void CheckTankConditions(Config_Store &cfg, io::PressureChannel &tankLevel, io::RelayChannel &tankPump) {
//Check if config says relay works inverted
tankPump.setInverted(cfg.TankPumpInvert.getValue());
//First check if Tank has enough water and disable pump if necessary
if (tankLevel.getPercent() < cfg.TankMinLevel.getValue()) {
tankPump.switchRelay(io::RelayChannel::state::OFF);
S_tankempty = true;
} else if (tankLevel.getPercent() > cfg.TankMinLevel.getValue() + cfg.TankHysteresis.getValue()) {
tankPump.switchRelay(io::RelayChannel::state::ON);
S_tankempty = false;
}
}
void CheckRefillConditions(Config_Store &cfg, io::PressureChannel &tankLevel, io::GPIChannel &refillBlock,
io::RelayChannel &refillPump) {
static uint32_t c_RefillCooldown = 0;
static bool c_LastState = false;
bool rblock = (cfg.RefillBlockInvert.getValue()) ? !refillBlock.getStateBool() : refillBlock.getStateBool();
if (cfg.RefillEnable.getValue()) {
//Check whether refilling is necessary
if (HAL_GetTick() > (c_RefillCooldown + (cfg.RefillCooldown.getValue() * 60 * 1000))) {
S_refillcooldown = 0;
if (tankLevel.getPercent() < cfg.RefillBelow.getValue()) {
if (cfg.RefillBlockEnable.getValue() && !rblock) {
refillPump.switchRelay(io::RelayChannel::state::ON);
c_LastState = true;
S_refilling = true;
S_refillempty = false;
} else if (rblock) {
refillPump.switchRelay(io::RelayChannel::state::OFF);
S_refilling = false;
S_refillempty = true;
//Reset cooldown only if it was previously on
if (c_LastState)
c_RefillCooldown = HAL_GetTick();
c_LastState = false;
} else {
refillPump.switchRelay(io::RelayChannel::state::ON);
c_LastState = true;
S_refilling = true;
S_refillempty = false;
}
} else if (tankLevel.getPercent() > cfg.RefillBelow.getValue() + cfg.RefillHysteresis.getValue()) {
refillPump.switchRelay(io::RelayChannel::state::OFF);
S_refilling = false;
S_refillempty = false;
if (c_LastState)
c_RefillCooldown = HAL_GetTick();
c_LastState = false;
}
} else {
HAL_GPIO_TogglePin(LED3_GPIO_Port, LED3_Pin);
refillPump.switchRelay(io::RelayChannel::state::OFF);
S_refillcooldown = (((c_RefillCooldown + (cfg.RefillCooldown.getValue() * 60 * 1000)) - HAL_GetTick()) /
1000);
}
} else {
refillPump.switchRelay(io::RelayChannel::state::OFF);
}
}
void SendUartString(UART_HandleTypeDef *huart, char out[]) {
HAL_UART_Transmit(huart, (uint8_t *) out, strlen(out), 500);
char newline[1] = {'\n'};
HAL_UART_Transmit(huart, (uint8_t *) newline, 1, 100);
}
int main(void) {
// Step 1: Initialize HAL
HAL_Init();
//Step 2: Configure Clock and RCC
SystemClock_Config();
//Step 3: Configure Peripherals
MX_GPIO_Init();
//MX_RTC_Init();
MX_TIM2_Init();
MX_TIM3_Init();
//MX_USB_DEVICE_Init();
MX_ADC1_Init();
MX_I2C1_Init();
MX_USART1_UART_Init();
//Disable Interrupt for Debouncing timer during display initialisation (exact timings are necessary)
HAL_NVIC_DisableIRQ(TIM2_IRQn);
LCD_I2C_Driver &display = floatpump::LCD_I2C_Driver::getInstance(hi2c1, SLAVE_ADDRESS_LCD);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
//Restore configuration
Config_Store::getInstance().loadFromFlash();
//Run init Sequence
InitSequence initializer(display);
initializer.runInitSequence();
using namespace floatpump::menu;
Menu tankmenu("Tank");
bool a_caliblow, a_calibhigh = false;
tankmenu.addEntry<MenuEntryExecute>(&a_caliblow, "Kal. Unt. Punkt");
tankmenu.addEntry<MenuEntryExecute>(&a_calibhigh, "Kal. Ob. Punkt");
tankmenu.addEntry<MenuEntryNumeric>(Config_Store::getInstance().TankCalibLow.getLink(), "K Unten");
tankmenu.addEntry<MenuEntryNumeric>(Config_Store::getInstance().TankCalibHigh.getLink(), "K Oben");
tankmenu.addEntry<MenuEntryPercent>(Config_Store::getInstance().TankMinLevel.getLink(), "Min. Fuellst.");
tankmenu.addEntry<MenuEntryPercent>(Config_Store::getInstance().TankHysteresis.getLink(), "Hysterese");
tankmenu.addEntry<MenuEntryCheckable>(Config_Store::getInstance().TankPumpInvert.getLink(), "Inv Relais");
Menu refillmenu("Nachspeisung");
refillmenu.addEntry<MenuEntryCheckable>(Config_Store::getInstance().RefillEnable.getLink(), "Nachsp. akt.");
refillmenu.addEntry<MenuEntryCheckable>(Config_Store::getInstance().RefillBlockEnable.getLink(), "Notabschalt.");
refillmenu.addEntry<MenuEntryCheckable>(Config_Store::getInstance().RefillBlockInvert.getLink(), "NotAbs. Inv.");
refillmenu.addEntry<MenuEntryPercent>(Config_Store::getInstance().RefillBelow.getLink(), "Auff. bis");
refillmenu.addEntry<MenuEntryPercent>(Config_Store::getInstance().RefillHysteresis.getLink(), "Hysterese");
refillmenu.addEntry<MenuEntryNumeric>(Config_Store::getInstance().RefillCooldown.getLink(), "Wartezeit");
Menu mainmenu("Hauptmenu");
mainmenu.addSubmenu(tankmenu);
mainmenu.addSubmenu(refillmenu);
//Instantiate Input and Output modules
io::PressureChannel tankLevel0(&hadc1, MPWR0_GPIO_Port, MPWR0_Pin, 50);
tankLevel0.LinkCalibConfig(Config_Store::getInstance().TankCalibLow.getLink(),
Config_Store::getInstance().TankCalibHigh.getLink());
io::GPIChannel refillBlocker0(GPI0_GPIO_Port, GPI0_Pin);
io::RelayChannel tankPump(OCHAN0_GPIO_Port, OCHAN0_Pin, true, io::RelayChannel::state::OFF);
io::RelayChannel refillPump(OCHAN1_GPIO_Port, OCHAN1_Pin, false, io::RelayChannel::state::OFF);
//Initially switch relays off by forcing a refresh
tankPump.forceRefresh();
refillPump.forceRefresh();
uint32_t last_menu_retrigger = 0;
uint32_t last_backlight_retrigger = 0;
bool f_store = false, f_restore = false;
mainmenu.addEntry<MenuEntryExecute>(&f_store, "Speichern");
mainmenu.addEntry<MenuEntryExecute>(&f_restore, "Laden");
Menu_Controller controller(&mainmenu, display);
static int old_pos = 0;
static int8_t history_h[59];
static int8_t history_d[23];
static int8_t diff_hist_hour = 0;
static int8_t diff_hist_day = 0;
static uint16_t old_minute_counter = minute_counter;
static uint32_t dly_disp, dly_stats, dly_switch;
SendUartString(&huart1, "Hello from FloatPUMP Controller");
SendUartString(&huart1, {"Revision: " GIT_HASH});
while (1) {
//Execute this block each second only
if(HAL_GetTick() > dly_disp + 1000)
{
dly_disp = HAL_GetTick();
display.LCDSetBacklight(S_backlight);
//Increase to 21 -> crucial bug! usually never use sprintf! TODO: find another option instead!!!!
char buf[21];
display.LCDSetCursor(0, 0);
sprintf(buf, "Fuellstand %3d %%", tankLevel0.getPercent());
display.LCDSendCString(buf);
display.LCDSetCursor(0, 1);
if (S_tankempty) {
display.LCDSendCString(const_cast<char *>(std::string("Tank Wassermangel ").c_str()));
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_SET);
} else {
display.LCDSendCString(const_cast<char *>(std::string("Tank Normal ").c_str()));
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_RESET);
}
display.LCDSetCursor(0, 2);
if (S_refilling) {
display.LCDSendCString(const_cast<char *>(std::string("Nachspeisung laeuft ").c_str()));
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_RESET);
} else {
display.LCDSendCString(const_cast<char *>(std::string("Nachspeisung inaktiv").c_str()));
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_SET);
}
display.LCDSetCursor(0, 3);
if (S_refillcooldown > 0) {
int remaining_mins = S_refillcooldown / 60;
if (remaining_mins > 0) {
sprintf(buf, "Nsp. wartet: %3d min", S_refillcooldown / 60);
display.LCDSendCString(buf);
} else {
sprintf(buf, "Nsp. wartet: %3d sec", S_refillcooldown);
display.LCDSendCString(buf);
}
} else if (S_refillempty) {
display.LCDSendCString(const_cast<char *>(std::string("Nachspeisung mangel ").c_str()));
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
} else {
display.LCDSendCString(const_cast<char *>(std::string("Nachspeisung ok ").c_str()));
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_SET);
}
}
//Check for rotation to enable display backlight
if (old_pos < rot_counter) {
controller.pushEvent(menu::Menu_Controller::Event::Increase);
old_pos = rot_counter;
last_backlight_retrigger = HAL_GetTick();
} else if (old_pos > rot_counter) {
controller.pushEvent(menu::Menu_Controller::Event::Decrease);
old_pos = rot_counter;
last_backlight_retrigger = HAL_GetTick();
}
//Check and toggle backlight state
if (HAL_GetTick() > last_backlight_retrigger + 60000) {
S_backlight = false;
} else {
S_backlight = true;
}
if (rot_button) {
display.LCDSetBacklight(true);
rot_button = false;
last_menu_retrigger = HAL_GetTick();
while (true) {
//Display menu until timeout
tankPump.switchRelay(floatpump::io::RelayChannel::state::OFF);
refillPump.switchRelay(floatpump::io::RelayChannel::state::OFF);
//Force refresh
tankPump.forceRefresh();
refillPump.forceRefresh();
controller.execute();
if (rot_button) {
rot_button = false;
controller.pushEvent(menu::Menu_Controller::Event::Push);
last_menu_retrigger = HAL_GetTick();
}
if (old_pos < rot_counter) {
controller.pushEvent(menu::Menu_Controller::Event::Increase);
old_pos = rot_counter;
last_menu_retrigger = HAL_GetTick();
} else if (old_pos > rot_counter) {
controller.pushEvent(menu::Menu_Controller::Event::Decrease);
old_pos = rot_counter;
last_menu_retrigger = HAL_GetTick();
}
HAL_Delay(10);
//Execute Calibrations if necessary
if (a_caliblow) {
controller.execute();
tankLevel0.calibrateLow();
a_caliblow = false;
} else if (a_calibhigh) {
controller.execute();
tankLevel0.calibrateHigh();
a_calibhigh = false;
}
//Store or restore if necessary
if (f_store) {
controller.execute();
Config_Store::getInstance().saveToFlash();
f_store = false;
} else if (f_restore) {
controller.execute();
Config_Store::getInstance().loadFromFlash();
HAL_Delay(300);
f_restore = false;
}
if (HAL_GetTick() > last_menu_retrigger + 10000) {
display.LCDClearDisplay();
//Force relay refresh to apply inverted outputs immediately
tankPump.forceRefresh();
refillPump.forceRefresh();
break;
}
}
}
//Execute this only each 5 seconds
if(HAL_GetTick() > dly_switch + 5000)
{
dly_switch = HAL_GetTick();
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);
//Poll Sensors
tankLevel0.poll();
refillBlocker0.poll();
//Check conditions
CheckTankConditions(Config_Store::getInstance(), tankLevel0, tankPump);
CheckRefillConditions(Config_Store::getInstance(), tankLevel0, refillBlocker0, refillPump);
//Create history
if (old_minute_counter < minute_counter) {
old_minute_counter = minute_counter;
history_h[minute_counter % 60] = tankLevel0.getPercent();
history_d[minute_counter / 60] = tankLevel0.getPercent();
//Calculate diff to value 1h ago -> minute_counter+1's entry is always 60mins ago !
diff_hist_hour = history_h[minute_counter % 60] - history_h[(minute_counter + 1) % 60];
//Same here for daily history
diff_hist_day = history_d[(minute_counter / 60) % 24] - history_d[((minute_counter + 60) / 60) % 24];
}
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET);
}
HAL_Delay(1000);
//Periodically send stats via uart in json format each minute
if(HAL_GetTick() > dly_stats + 60000)
{
dly_stats = HAL_GetTick();
char buffer[400];
sprintf(buffer, "{"
"\"Status\": true, "
"\"TankLevel\": %hhd, "
"\"TankPump\": %s, "
"\"RefillPump\": %s, "
"\"RefillEmpty\": %s, "
"\"RefillCooldown\": %hhd, "
"\"HourlyHist\": %hhd, "
"\"DailyHist\": %hhd, "
"}",
tankLevel0.getPercent(),
(S_tankempty) ? "false" : "true",
(S_refilling) ? "true" : "false",
(S_refillempty) ? "true" : "false",
S_refillcooldown,
diff_hist_hour,
diff_hist_day);
SendUartString(&huart1, buffer);
}
}
}
void SystemClock_Config(void) {
/*RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
*//** Configure the main internal regulator output voltage
*//*
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
*//** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*//*
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.LSEState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 12;
RCC_OscInitStruct.PLL.PLLN = 144;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV6;
RCC_OscInitStruct.PLL.PLLQ = 3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
*//** Initializes the CPU, AHB and APB buses clocks
*//*
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) {
Error_Handler();
}*/
//Workaround by using internal oscillator
//TODO: Fix this issue later, must work with HSE as well
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 192;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV8;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) {
Error_Handler();
}
}
static void MX_ADC1_Init(void) {
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK) {
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
static void MX_I2C1_Init(void) {
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
static void MX_RTC_Init(void) {
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK) {
Error_Handler();
}
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0;
sTime.Minutes = 0;
sTime.Seconds = 0;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN) != HAL_OK) {
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_MONDAY;
sDate.Month = RTC_MONTH_JANUARY;
sDate.Date = 1;
sDate.Year = 0;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BIN) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void) {
//Timer has input of 24MHZ
//Scale down with prescaler to 10kHz
//Auto reload each ms
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 23;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 99;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
Error_Handler();
}
//HAL_TIM_Base_Start(&htim2);
//Directly start timer base generation in interrupt mode
HAL_TIM_Base_Start_IT(&htim2);
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
static void MX_TIM3_Init(void) {
//Timer has input of 24MHZ
//Scale down with prescaler to 10kHz
//Auto reload each ms
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 24000;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 59000;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK) {
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK) {
Error_Handler();
}
//HAL_TIM_Base_Start(&htim2);
//Directly start timer base generation in interrupt mode
HAL_TIM_Base_Start_IT(&htim3);
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void) {
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(XXUNUSED_GPIO_Port, XXUNUSED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, OCHAN0_Pin | OCHAN1_Pin | OCHAN2_Pin | BEEP_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LED2_Pin | LED3_Pin | LED4_Pin | LED5_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, LED0_Pin
| LED1_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOB,
MPWR0_Pin | MPWR1_Pin | MPWR2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : XXUNUSED_Pin */
GPIO_InitStruct.Pin = XXUNUSED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(XXUNUSED_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : OCHAN0_Pin OCHAN1_Pin OCHAN2_Pin LED2_Pin
LED3_Pin LED4_Pin LED5_Pin BEEP_Pin */
GPIO_InitStruct.Pin = OCHAN0_Pin | OCHAN1_Pin | OCHAN2_Pin | LED2_Pin
| LED3_Pin | LED4_Pin | LED5_Pin | BEEP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : RRDT_Pin RRSW_pin RRCLK_Pin */
GPIO_InitStruct.Pin = RRDT_Pin | RRSW_Pin | RRCLK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : ADC1_2_Pin */
GPIO_InitStruct.Pin = ADC1_2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(ADC1_2_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : MPWR0_Pin MPWR1_Pin MPWR2_Pin LED0_Pin
LED1_Pin */
GPIO_InitStruct.Pin = MPWR0_Pin | MPWR1_Pin | MPWR2_Pin | LED0_Pin
| LED1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : GPI1_Pin GPI2_Pin GPI0_Pin */
GPIO_InitStruct.Pin = GPI1_Pin | GPI2_Pin | GPI0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void) {
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
MX_GPIO_Init();
HAL_GPIO_WritePin(LED0_GPIO_Port, LED0_Pin, GPIO_PIN_RESET);
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */