floatpump-firmware/Core/Src/main.cpp
2023-01-12 15:42:34 +01:00

629 lines
20 KiB
C++

#include "main.h"
#include "usb_device.h"
#include "usbd_cdc_if.h"
#include "LCD_I2C_Driver.h"
#include "InitSequence.h"
#include "button_input.h"
#include "Menu.h"
#include "Menu_Entry_Type_Checkable.h"
#include "Menu_Entry_Type_Numeric.h"
#include "Menu_Entry_Type_Percent.h"
#include "Menu_Entry_Type_ReadOnly.h"
#include "Menu_Entry_Type_Time.h"
#include "Config_Store.h"
#include "Menu_Controller.h"
#include "PressureChannel.h"
#include "RelayChannel.h"
#include "GPIChannel.h"
#include "Menu_Entry_Type_Execute.h"
#define SLAVE_ADDRESS_LCD 0x4e
ADC_HandleTypeDef hadc1;
I2C_HandleTypeDef hi2c1;
RTC_HandleTypeDef hrtc;
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart1;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_RTC_Init(void);
static void MX_ADC1_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM2_Init(void);
static void MX_USART1_UART_Init(void);
extern int16_t rot_counter;
extern bool rot_button;
using namespace floatpump;
void CheckTankConditions(Config_Store &cfg, io::PressureChannel &tankLevel, io::RelayChannel &tankPump) {
//Check if config says relay works inverted
tankPump.setInverted(cfg.TankPumpInvert.getValue());
//First check if Tank has enough water and disable pump if necessary
if(tankLevel.getPercent() < cfg.TankMinLevel.getValue()) {
tankPump.switchRelay(io::RelayChannel::state::OFF);
} else if(tankLevel.getPercent() > cfg.TankMinLevel.getValue() + cfg.TankHysteresis.getValue()) {
tankPump.switchRelay(io::RelayChannel::state::ON);
}
}
void CheckRefillConditions(Config_Store &cfg, io::PressureChannel &tankLevel, io::GPIChannel &refillBlock, io::RelayChannel &refillPump) {
if(cfg.RefillEnable.getValue()) {
//Check whether refilling is necessary
if(tankLevel.getPercent() < cfg.RefillBelow.getValue()) {
if(cfg.RefillBlockEnable.getValue() && !refillBlock.getStateBool()) {
refillPump.switchRelay(io::RelayChannel::state::ON);
} else {
refillPump.switchRelay(io::RelayChannel::state::ON);
}
} else if (tankLevel.getPercent() > cfg.RefillBelow.getValue() + cfg.RefillHysteresis.getValue()) {
refillPump.switchRelay(io::RelayChannel::state::OFF);
}
} else {
refillPump.switchRelay(io::RelayChannel::state::OFF);
}
}
int main(void) {
Config_Store globalConfig;
// Step 1: Initialize HAL
HAL_Init();
//Step 2: Configure Clock and RCC
SystemClock_Config();
//Step 3: Configure Peripherals
MX_GPIO_Init();
MX_RTC_Init();
MX_TIM2_Init();
MX_USB_DEVICE_Init();
MX_ADC1_Init();
MX_I2C1_Init();
MX_USART1_UART_Init();
//Disable Interrupt for Debouncing timer during display initialisation (exact timings are necessary)
HAL_NVIC_DisableIRQ(TIM2_IRQn);
LCD_I2C_Driver &display = floatpump::LCD_I2C_Driver::getInstance(hi2c1, SLAVE_ADDRESS_LCD);
HAL_NVIC_EnableIRQ(TIM2_IRQn);
//Run init Sequence
InitSequence initializer(display);
initializer.runInitSequence();
//Enable green led
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_RESET);
///
///
/// EXPERIMENTAL CODE BEGIN
///
///
///
using namespace floatpump;
menu::Menu tankmenu("Tank");
bool a_caliblow, a_calibhigh = false;
menu::Menu_Entry_Type_Execute t_exCalibLow;
menu::Menu_Entry_Type_Execute t_exCalibHigh;
t_exCalibLow.linkConfig(&a_caliblow);
t_exCalibHigh.linkConfig(&a_calibhigh);
menu::Menu_Entry exCalibLow(t_exCalibLow, "Kal. Unt. Punkt");
menu::Menu_Entry exCalibHigh(t_exCalibHigh, "Kal. Ob. Punkt");
menu::Menu_Entry_Type_Numeric t_CalibLow(0);
menu::Menu_Entry_Type_Numeric t_CalibHigh(65535);
t_CalibLow.linkConfig(globalConfig.TankCalibLow.getLink());
t_CalibHigh.linkConfig(globalConfig.TankCalibHigh.getLink());
menu::Menu_Entry CalibLow(t_CalibLow, "K Unten");
menu::Menu_Entry CalibHigh(t_CalibHigh, "K Oben");
menu::Menu_Entry_Type_Percent t_tankLevel(25);
t_tankLevel.linkConfig(globalConfig.TankMinLevel.getLink());
menu::Menu_Entry TankLevel(t_tankLevel, "Min. Fuellst.");
menu::Menu_Entry_Type_Percent t_tankHysteresis(5);
t_tankHysteresis.linkConfig(globalConfig.TankHysteresis.getLink());
menu::Menu_Entry TankHysteresis(t_tankHysteresis, "Hysterese");
menu::Menu_Entry_Type_Checkable t_tankInvert(false);
t_tankInvert.linkConfig(globalConfig.TankPumpInvert.getLink());
menu::Menu_Entry TankInvert(t_tankInvert, "Inv. Relais");
tankmenu.addEntry(exCalibLow);
tankmenu.addEntry(exCalibHigh);
tankmenu.addEntry(CalibLow);
tankmenu.addEntry(CalibHigh);
tankmenu.addEntry(TankLevel);
tankmenu.addEntry(TankHysteresis);
tankmenu.addEntry(TankInvert);
menu::Menu refillmenu("Nachspeisung");
menu::Menu_Entry_Type_Checkable t_refillEnable(false);
menu::Menu_Entry_Type_Checkable t_refillBlock(true);
menu::Menu_Entry_Type_Checkable t_refillBlockInvert(false);
t_refillEnable.linkConfig(globalConfig.RefillEnable.getLink());
t_refillBlock.linkConfig(globalConfig.RefillBlockEnable.getLink());
t_refillBlockInvert.linkConfig(globalConfig.RefillBlockInvert.getLink());
menu::Menu_Entry refillEnable(t_refillEnable, "Nachsp. akt.");
menu::Menu_Entry refillBlock(t_refillBlock, "Notabschalt.");
menu::Menu_Entry refillBlockInvert(t_refillBlockInvert, "NotAbs. Inv.");
menu::Menu_Entry_Type_Percent t_RefillBelow(20);
menu::Menu_Entry_Type_Percent t_RefillHysteresis(5);
t_RefillBelow.linkConfig(globalConfig.RefillBelow.getLink());
t_RefillHysteresis.linkConfig(globalConfig.RefillHysteresis.getLink());
menu::Menu_Entry refillBelow(t_RefillBelow, "Auff. bis");
menu::Menu_Entry refillHysteresis(t_RefillHysteresis, "Hysterese");
refillmenu.addEntry(refillEnable);
refillmenu.addEntry(refillBlock);
refillmenu.addEntry(refillBlockInvert);
refillmenu.addEntry(refillBelow);
refillmenu.addEntry(refillHysteresis);
menu::Menu mainmenu("Hauptmenu");
mainmenu.addSubmenu(&tankmenu);
mainmenu.addSubmenu(&refillmenu);
menu::Menu_Controller controller(&mainmenu, display);
static int old_pos = 0;
//Instantiate Input and Output modules
io::PressureChannel tankLevel0(&hadc1, MPWR0_GPIO_Port, MPWR0_Pin, 50);
io::GPIChannel refillBlocker0(GPI0_GPIO_Port, GPI0_Pin);
io::RelayChannel tankPump(OCHAN0_GPIO_Port, OCHAN0_Pin, true, io::RelayChannel::state::OFF);
io::RelayChannel refillPump(OCHAN1_GPIO_Port, OCHAN1_Pin, false, io::RelayChannel::state::OFF);
uint32_t last_menu_retrigger = 0;
bool f_store = false, f_restore = false;
menu::Menu_Entry_Type_Execute t_MStore;
menu::Menu_Entry_Type_Execute t_MRestore;
t_MStore.linkConfig(&f_store);
t_MRestore.linkConfig(&f_restore);
menu::Menu_Entry MStore(t_MStore, "Speichern");
menu::Menu_Entry MRestore(t_MRestore, "Laden");
mainmenu.addEntry(MStore);
mainmenu.addEntry(MRestore);
while (1) {
display.LCDSetCursor(0,0);
display.LCDSendCString(const_cast<char *>(std::string("Tank: " + std::to_string(tankLevel0.getPercent()) + " %").c_str()));
display.LCDSetCursor(0, 1);
if(tankLevel0.getPercent() < globalConfig.TankMinLevel.getValue()) {
display.LCDSendCString(const_cast<char *>(std::string("Tank Wassermangel").c_str()));
} else {
display.LCDSendCString(const_cast<char *>(std::string("Tank Normal").c_str()));
}
if(rot_button) {
rot_button = false;
last_menu_retrigger = HAL_GetTick();
while(true) {
//Display menu until timeout
controller.execute();
if (rot_button) {
rot_button = false;
controller.pushEvent(menu::Menu_Controller::Event::Push);
last_menu_retrigger = HAL_GetTick();
}
if (old_pos < rot_counter) {
controller.pushEvent(menu::Menu_Controller::Event::Increase);
old_pos = rot_counter;
last_menu_retrigger = HAL_GetTick();
} else if (old_pos > rot_counter) {
controller.pushEvent(menu::Menu_Controller::Event::Decrease);
old_pos = rot_counter;
last_menu_retrigger = HAL_GetTick();
}
HAL_Delay(100);
//Execute Calibrations if necessary
if(a_caliblow) {
tankLevel0.calibrateLow();
controller.execute();
HAL_Delay(2000);
a_caliblow = false;
} else if (a_calibhigh) {
tankLevel0.calibrateHigh();
controller.execute();
HAL_Delay(2000);
a_calibhigh = false;
}
//Store or restore if necessary
if(f_store) {
globalConfig.saveToFlash();
f_store = false;
} else if (f_restore) {
globalConfig.loadFromFlash();
f_restore = false;
}
if(HAL_GetTick() > last_menu_retrigger + 10000) {
display.LCDClearDisplay();
break;
}
}
}
//Poll Sensors
tankLevel0.poll();
refillBlocker0.poll();
//Check conditions
CheckTankConditions(globalConfig, tankLevel0, tankPump);
CheckRefillConditions(globalConfig, tankLevel0, refillBlocker0, refillPump);
HAL_Delay(1000);
}
}
void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 12;
RCC_OscInitStruct.PLL.PLLN = 144;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV6;
RCC_OscInitStruct.PLL.PLLQ = 3;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) {
Error_Handler();
}
}
static void MX_ADC1_Init(void) {
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK) {
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
static void MX_I2C1_Init(void) {
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
static void MX_RTC_Init(void) {
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK) {
Error_Handler();
}
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0;
sTime.Minutes = 0;
sTime.Seconds = 0;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN) != HAL_OK) {
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_MONDAY;
sDate.Month = RTC_MONTH_JANUARY;
sDate.Date = 1;
sDate.Year = 0;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BIN) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void) {
//Timer has input of 24MHZ
//Scale down with prescaler to 10kHz
//Auto reload each ms
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 23;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 99;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
Error_Handler();
}
//HAL_TIM_Base_Start(&htim2);
//Directly start timer base generation in interrupt mode
HAL_TIM_Base_Start_IT(&htim2);
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void) {
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK) {
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(XXUNUSED_GPIO_Port, XXUNUSED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, OCHAN0_Pin | OCHAN1_Pin | OCHAN2_Pin | BEEP_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LED2_Pin | LED3_Pin | LED4_Pin | LED5_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, LED0_Pin
| LED1_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOB,
MPWR0_Pin | MPWR1_Pin | MPWR2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : XXUNUSED_Pin */
GPIO_InitStruct.Pin = XXUNUSED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(XXUNUSED_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : OCHAN0_Pin OCHAN1_Pin OCHAN2_Pin LED2_Pin
LED3_Pin LED4_Pin LED5_Pin BEEP_Pin */
GPIO_InitStruct.Pin = OCHAN0_Pin | OCHAN1_Pin | OCHAN2_Pin | LED2_Pin
| LED3_Pin | LED4_Pin | LED5_Pin | BEEP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : RRDT_Pin RRSW_pin RRCLK_Pin */
GPIO_InitStruct.Pin = RRDT_Pin | RRSW_Pin | RRCLK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : ADC1_2_Pin */
GPIO_InitStruct.Pin = ADC1_2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(ADC1_2_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : MPWR0_Pin MPWR1_Pin MPWR2_Pin LED0_Pin
LED1_Pin */
GPIO_InitStruct.Pin = MPWR0_Pin | MPWR1_Pin | MPWR2_Pin | LED0_Pin
| LED1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : GPI1_Pin GPI2_Pin GPI0_Pin */
GPIO_InitStruct.Pin = GPI1_Pin | GPI2_Pin | GPI0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void) {
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */